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Protein purification of recombinant proteins constitutes a significant cost of biomanufacturing and various
efforts have been directed at developing more efficient purification methods. We describe a protein purification
scheme wherein Ralstonia eutropha is used to produce its own “affinity matrix,” thereby eliminating the need
for external chromatographic purification steps. This approach is based on the specific interaction of phasin
proteins with granules of the intracellular polymer polyhydroxybutyrate (PHB). By creating in-frame fusions
of phasins and green fluorescent protein (GFP) as a model protein, we demonstrated that GFP can be
efficiently sequestered to the surface of PHB granules. In a second step, we generated a phasin-intein-GFP
fusion, wherein the self-cleaving intein can be activated by the addition of thiols. This construct allowed for the
controlled binding and release of essentially pure GFP in a single separation step. Finally, pure, active
�-galactosidase was obtained in a single step using the above described method.

We have previously reported the development of a novel
high cell density protein expression platform based on the
gram-negative bacterium Ralstonia eutropha (22, 23). This sys-
tem has been developed to overcome some of the shortcom-
ings associated with recombinant protein expression in Esche-
richia coli (e.g., poor fermentation performance at high cell
density, and inclusion body formation). Expression of organo-
phosphohydrolase, an enzyme originally isolated from Pseudo-
monas diminuta (20) and prone to inclusion body formation in
Escherichia coli (4, 28, 29), was demonstrated at high levels.
Titers of active, soluble organophosphohydrolyase, in excess of
10 g/liter were obtained in high cell density fermentation (3),
representing at least a 100-fold increase over those previously
reported in E. coli.

While the successful expression of a recombinant protein is
a necessary requirement, recovery and purification still remain
a significant cost in recombinant protein production. We thus
sought to integrate the existing R. eutropha protein expression
platform with a protein purification strategy to simplify the
expression and purification of recombinant proteins. This spe-
cific approach uses the natural ability of R. eutropha to produce
a polymer known as polyhydroxybutyrate (PHB), which accu-
mulates as insoluble granules within the cell. PHB is a member
of the polyhydroxyalkanoate class of polymers, synthesized by
many bacteria, as carbon storage compounds (2, 15, 16, 26, 30,
31, 32). Polyhydroxyalkanoates have received attention as bio-
degradable polymers and can be obtained by fermentation
processes utilizing cheap, abundant renewable carbon sources
(2, 24). Polyhydroxyalkanoates have been produced industri-
ally by ZENECA Bioproducts (26) and Monsanto (10).

PHB synthesis in R. eutropha has been the model system for
studying polyhydroxyalkanoate biosynthesis in bacteria (10, 15,
16, 18, 26). The biogenesis of polyhydroxyalkanoate granules in-
volves two distinct proteins, the polyhydroxyalkanoate synthase
(PhaC) and phasins (PhaP). Phasins are low-molecular-weight
proteins whose role in polyhydroxyalkanoate formation is not well
understood (10, 11, 15, 16, 18, 24, 26, 30, 31, 32). Phasins accu-
mulate during PHB synthesis, bind to PHB granules, and pro-
mote further PHB synthesis (32). It has been shown that phaP
mutants form only one large PHB granule and that up-regulating
the phaP gene increases the number of PHB granules while re-
ducing their size (15, 26). Phasins accumulate at high levels in
cells that are synthesizing PHB, and as much as 5% of total
cellular protein can be PhaP (16). Phasins have high affinity for
PHB granules and are the predominant protein present on the
granule surface (24, 26).

In this study, we exploit the specific affinity between PhaP
and the PHB granules for the purpose of purifying a recom-
binant model protein (GFP). In essence, this yields an affinity-
based purification scheme wherein the cell synthesizes its own
chromatography matrix and PhaP is used as the affinity tag to
sequester a protein of interest to the PHB granule surface. The
recombinant protein can then be recovered by cell disruption
followed by a centrifugation step that separates the insoluble
high-density polymer from other soluble cellular components.
In an improved version, the protein of interest is linked to
PhaP through an intein allowing its release by thiol induced
cleavage (see Fig. 3).

Inteins are self-splicing proteins that occur as in-frame in-
sertions in specific host proteins throughout nature, and have
been adapted for use in recombinant protein expression and
purification schemes (9, 27). Intein cleavage can be mediated
by pH changes or the addition of thiols. The Mxe GyrA intein
is a 198-amino-acid polypeptide, with N-terminal cleavage ac-
tivity in the presence of thiols (25). By incorporating this intein
into a PhaP-intein-GFP fusion we were able to show (i) the
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expression of a PhaP-intein-GFP fusion protein, (ii) its seques-
tration to PHB granules, and (iii) the subsequent release of
GFP from the PHB granule by treating the cell debris with
dithiothreitol.

MATERIALS AND METHODS

Strains, plasmids and oligonucleotides. Strains and plasmids that were used in
this study are listed in Table 1. Oligonucleotides used in this study are listed in
Table 2. Standard procedures were used for the preparation and manipulation of
DNA and for PCR. All PCR products were subcloned into pCR2.1-TOPO
(Invitrogen), pCR4Blunt-TOPO (Invitrogen) or pCRII-Blunt-TOPO (Invitro-
gen) and sequence verified at the Molecular Biology Core Facility at Dartmouth
College. Methods for introducing plasmids into the R. eutropha chromosome
have previously been described (22, 23). In brief, all pKNOCK-Cm derived
plasmids are introduced into E. coli S17 (17, 21) before being incorporated into
the R. eutropha chromosome by simple biparental mating.

Growth media, antibiotics and cultivation conditions. E. coli strains were
grown in Luria-Bertani (LB) medium (13). R. eutropha strains were grown in one
of the following media depending on the application: LB medium or Lee me-

dium (20 g/liter glucose, 3 g/liter Na2HPO4 · 7H2O, 1 g/liter KH2PO4, 2 g/liter
NH4Cl, 0.2 g/liter MgSO4 · 7H2O, 1 ml/liter Corn Steep Liquor [Sigma], 2.4
ml/liter trace element solution [22]). Antibiotics were added to the growth medium
to the following concentrations depending on the application: chloramphenicol (50
�g/ml), kanamycin (50 �g/ml), and gentamicin (10 �g/ml). R. eutropha and E. coli
strains were cultivated at 30°C and 37°C, respectively.

Fluorescence microscopy. To prepare cells for fluorescence microscopy, cells
were transferred from LB agar plates into 200 �l of buffer (phosphate-buffered
saline) and resuspended thoroughly; 10 �l of this cell suspension were trans-
ferred to a single well in a 15-well slide pretreated with 1% poly-L-lysine. Mi-
croscopy was carried out using a Leica epifluorescence light microscope. An
ORCA-ER charge-coupled device camera (Hamamatsu) and OPENLAB soft-
ware (Improvision) were used for all image acquisition and processing.

Sucrose gradient fractionation. Strains were cultivated in 50 ml of Lee me-
dium to an approximate optical density at 600 nm of 10. The cultures were
centrifuged and the cells resuspended in 2 ml of buffer B1 (20 mM Tris, 500 mM
NaCl, 1 mM EDTA, pH 8.5). Cells were sonicated in a Fisher Scientific Sonic
Dismembrator 550 in ten pulsed cycles (2 seconds ON, 0.5 second off, 30 second
duration, 5 min cooling on ice between cycles); 1 ml of the lysate was loaded onto
a sucrose density gradient. The sucrose density gradient consists of nine layered
1 ml fractions of buffer B1 containing 0 to 2 M sucrose (0.25 M increments). The

TABLE 1. Strains and plasmids used in this study

Strain or plasmid Descriptiona Reference or source

R. eutropha strains
NCIMB 40124 Wild type; gentamicin resistant National Collections of Industrial,

Food & Marine Bacteria,
Aberdeen, Scotland

G pG introduced into R. eutropha wt This study
PG pPG introduced into R. eutropha wt This study
PIG pPIG introduced into R. eutropha wt This study
GP pGP introduced into R. eutropha wt This study
GIP pGIP introduced into R. eutropha wt This study
PIL pPIL introduced into R. eutropha wt This study

E. coli strains
TOP10 Host strain for plasmids derived from pCR2.1-TOPO Invitrogen
S-17 Host strain for plasmids derived from pKNOCK-Cm 8, 17, 21

Plasmids
pG phaPp::gfp transcriptional fusion introduced into pKNOCK-Cm; plasmid

used to create strain R. eutropha G
This study

pPG phaP ORF::gfp translational fusion introduced into pKNOCK-Cm; plasmid
used to create strain R. eutropha PG

This study

pPIG phaP ORF::Mxe GyrA intein::gfp translational fusion in pKNOCK-Cm;
plasmid used to create strain R. eutropha PIG

This study

pGP phaPp::gfp::phaP transcriptional fusion in pKNOCK-Cm; plasmid used to
create strain R. eutropha GP

This study

pGIP phaPp::gfp::Mxe GyrA intein::phaP transcriptional fusion in pKNOCK-Cm;
plasmid used to create strain R. eutropha GIP

This study

pPIL phaP ORF::Mxe GyrA intein::lacZ translational fusion in pKNOCK-Cm;
plasmid used to create strain R. eutropha PIL

This study

pKNOCK-Cm Suicide vector used for introducing plasmids into R. eutropha chromosome 1
pGY1a� Vector containing phaPp::gfpmut2 translational fusion 30
pTWIN1 Commercially available expression vector containing Ssp DnaB intein and

Mxe GyrA intein
New England Biolabs

pUCPPCm Plasmid vector containing phaP promoter 22
pGB27 pKNOCK containing the phaP promoter This study
pGB73 Mxe GyrA intein introduced into pCR2.1-TOPO This study
pGB76 phaP ORF introduced into pCR2.1-TOPO This study
pGB80 phaPp::gfp::phaP transcriptional fusion in pKNOCK-Cm This study
pGB82 phaPp::gfp::NEB Mxe GyrA intein::phaP transcriptional fusion in

pKNOCK-Cm
This study

pGB85 phaP::gfp transcriptional fusion in pCR4-TOPO This study
pGB91 phaP::gfp transcriptional fusion in pKNOCK-Cm This study
pGB93 phaP::NEB Mxe GyrA intein::gfp transcriptional fusion in pKNOCK-Cm This study
pGB96 Peptide linker::phaP transcriptional fusion in pCR2.1-TOPO This study
pGB97 phaP::peptide linker transcriptional fusion in pCR2.1-TOPO This study
pGB470 lacZ ORF fragment cloned introduced into pCR4Blunt-TOPO This study

a wt, wild type.
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10-ml solutions were spun at 1,500 � g for 3 h. Ten 1 ml fractions were collected
with a syringe and needle.

Fluorometry. Fluorescence was measured using the SpectraMax Gemini spec-
trophotometer (Molecular Devices). Excitation and emission wavelengths of 360
nm and 509 nm, respectively, were used.

PHB analysis. The concentration of PHB was quantified by the sulfuric acid-
HPLC method of Karr et al. (12) with modifications (30).

Intein mediated cleavage. A published intein mediated cleavage protocol (14)
has been adapted for this study; 300 �l of the lysate generated from the sonica-
tion was centrifuged, the supernatant discarded and the insoluble pellet retained.
The pellet was washed three times by resuspension in 1 ml of buffer B1 followed
by centrifugation. The pellet was then resuspended in 500 �l of buffer B2 (buffer
B1 containing 40 mM dithiothreitol). The pellet was incubated overnight at 37°C.
After incubation, the solution was centrifuged and the supernatant and pellet
retained. The pellet was again washed as described above and resuspended in the
original volume (500 �l). Samples were subjected to fluorometry and sodium
dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) on a 12%
Tris-HCl polyacrylamide gel (Bio-Rad), stained with SimplyBlue SafeStain
(Invitrogen).

�-Galactosidase assay. We added 70 �l of an aqueous 4 mg/ml ortho-nitro-
phenyl-�-D-galactopyranoside (ONPG) solution to 200 �l of 1X cleavage
buffer (0.6 M Na2HPO4·7H2O, 0.4 M NaH2PO4·H2O, 0.1 M KCl, 0.01 M
MgSO4·7H2O, 2.7 ml/liter �-mercaptoethanol) and incubated in a 30°C water
bath for 10 min; 5 or 10 �l of sample (diluted to an appropriate concentration in
Buffer B1) was added to the cleavage buffer containing ONPG and incubated at
30°C for 30 min. The reaction was quenched by adding 500 �l Stop Buffer (1 M
Na2CO3). The amount of ONPG hydrolyzed was determined by measuring
optical density at 420 nm and using the molar extinction coefficient of ONPG
(4,500 M�1 cm�1). Total protein concentrations were measured using a Brad-
ford protein assay kit (Bio-Rad, Hercules, CA). 1 unit of galactosidase activity
was defined as the cleavage of 1 nmol of ONPG to o-nitrophenol and galactose
in 1 min at 30°C.

Construction of plasmid pG (phaPp::gfp transcriptional fusion in pKNOCK-
Cm). The phaP promoter from pUCPPCm was inserted into pKNOCK-Cm as a
EcoRI/EcoRV fragment yielding pGB27. The gfpmut2 open reading frame
(ORF) was PCR amplified from plasmid pGY1a� using oligonucleotides oGB41
and oGB42 and cloned into pCR2.1-TOPO (Invitrogen). The gfp ORF was
cloned from the resultant TOPO derivative into pGB27 as a SacI/XhoI fragment
yielding pG.

Subcloning an intein (pGB73). The Mxe GyrA intein was PCR amplified from
plasmid pTWIN1 (New England Biolabs) with oGB176 and oGB177 and cloned
into pCR2.1-TOPO to yield pGB73.

Construction of plasmids pGB80 and pGB82 (phaPp::gfp::phaP and
phaPp::gfp::intein::phaP transcriptional fusions in pKNOCK-Cm). The phaP
ORF was PCR amplified from R. eutropha genomic DNA with oligonucleotides
oGB183 and oGB44 and subcloned into pCR2.1-TOPO yielding pGB76. Plasmid
pGB76 was digested with EcoRV and KpnI and cloned into pG digested with
MlyI and KpnI to generate plasmid pGB80. The intein from plasmid pGB73 was
cloned into plasmid pGB80 as an AscI/XbaI fragment, yielding vector pGB82.

Construction of plasmids pGB91 and pGB93 (phaP::gfp and phaP::intein gfp
translational fusions in pKNOCK-Cm). A translational fusion of the phaP ORF
and the gfp ORF was constructed by overlap PCR. The phaP ORF was PCR
amplified from R. eutropha genomic DNA using oligonucleotides oGB185 and
oGB186. The gfp ORF was PCR amplified from pGY1a� using oligonucleotides
oGB187 and oGB40. The resultant PCR products were purified and used as
templates in a subsequent PCR. The resultant 1.2-kb PCR fragment was cloned
into pCR4Blunt-TOPO yielding pGB85. The 1.2-kb phaP::gfp translational fu-
sion was cloned into pKNOCK-Cm as a NotI/XhoI fragment yielding pGB91.
Plasmid pGB93 was created by introducing the intein from pGB73 into pGB91
as an AscI/XbaI fragment.

Construction of plasmids pGP and pGIP (phaPp::gfp::peptide linker::phaP and
phaPp::gfp::intein::peptide linker::phaP transcriptional fusions in pKNOCK-Cm).
The phaP ORF was PCR amplified from genomic DNA using oligonucleotides
oGB209 and oGB44. The resultant 0.6 kb fragment was cloned into pCR2.1-
TOPO to yield pGB96. The phaP ORF in plasmids pGB80 and pGB82 was
excised as an XbaI/KpnI fragment and replaced with the 0.6-kb XbaI/KpnI
fragment of pGB96 to yield plasmids pGP and pGIP, respectively.

Construction of plasmids pPG and pPIG (phaP::peptide linker::gfp and
phaP::peptide linker::intein::gfp translational fusions in pKNOCK-Cm). The phaP
ORF was PCR amplified from genomic DNA using oligonucleotides oGB185
and oGB208. The resultant 0.6 kb fragment was cloned into pCR2.1-TOPO to
yield pGB97. The phaP ORF in plasmids pGB91 and pGB93 was excised as a
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FIG. 1. Representative GFP localization. Fluorescence microscopy and sucrose density gradient fractionation of cell lysates. a) Wild-type
R. eutropha. b) R. eutropha G (expressing GFP). c) R. eutropha PG (expressing PhaP-GFP). d) R. eutropha PIG (expressing PhaP-intein-GFP).
Cell lysates were generated by sonication and added to the top of a sucrose density gradient. Fluorescence of individual sucrose density gradient
fractions is expressed in relative fluorescence units divided by 100 and shown in green. Corresponding PHB concentrations are expressed in mg/liter
and shown in tan.
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SacI/AscI fragment and replaced with the 0.6-kb SacI/AscI fragment of pGB97 to
yield plasmids pPG and pPIG, respectively.

Construction of plasmid pPIL (phaP::peptide linker::intein::lacZ translational
fusion in pKNOCK-Cm). The lacZ ORF was PCR amplified from E. coli S17
genomic DNA using oligonucleotides oGB216 and oGB217. The 3.0-kb frag-
ment was subcloned into pCRII-Blunt-TOPO to generate pGB470. The lacZ
ORF from pGB470 was cloned into pPIG as an XbaI/XhoI fragment, yielding
plasmid pPIL.

R. eutropha strain generation. Ralstonia eutropha recombinant strains were
generated according to methods previously described (3, 22, 23). R. eutropha G,
was generated using plasmid pG, which carries a transcriptional fusion between
the phaP promoter and the gfpmut2 ORF (6) (phaPp::gfp). Plasmid pG is a
suicide plasmid and is integrated at the phaP promoter locus of the R. eutropha
chromosome. Since integration occurs within the promoter region, the wild-type
phaP gene remains intact. R. eutropha PG and R. eutropha PIG were generated
using plasmids pPG and pPIG, respectively. Plasmid pPG contains an in-frame
translational fusion between the phaP ORF and gfpmut2 ORF (phaP::gfp). Plas-
mid pPIG is isogenic to pPG, with the exception of the in-frame insertion of the
Mxe GyrA intein between the two open reading frames (phaP::Mxe GyrA
intein::gfp). Plasmids pPG and pPIG do not contain the phaP promoter and the
phaP ORF serves as the homologous recombination locus. Therefore in
R. eutropha PG and R. eutropha PIG, the wild-type phaP gene has been replaced
by a translational fusion encoding phaP::gfp and phaP::intein::gfp, respectively.

RESULTS

Both fluorescence microscopy and sucrose density gradient
fractionation of cell lysates were used to examine localization of
GFP in R. eutropha strains. The fluorescence microscopy images
in Fig. 1 show that the wild type exhibited no autofluores-
cence and that GFP is evenly distributed throughout the cell in
R. eutropha G. However, Fig. 1 shows fluorescent foci throughout
the cells in R. eutropha PG and R. eutropha PIG, presumably
where GFP is localized on the surface of PHB granules.

Sucrose density gradient fractionation of cell lysates was
performed to further examine GFP localization (see Materials
and Methods). R. eutropha strains were cultivated in Lee me-
dium, a phosphate limited growth medium that induces both
PHB formation and transcription of genes under the control of
the phaP promoter. Cells were recovered, washed, resus-
pended in buffer B1, and sonicated. Cell lysates were loaded
onto a sucrose gradient (density from 1.02 g/ml to 1.29 g/ml)
and equilibrated by centrifugation. PHB granules have a den-
sity of approximately 1.20 g/ml (19) and accumulate near the
bottom of the sucrose density gradient. In contrast, soluble
proteins accumulate in the low density fractions at the top of
the sucrose density gradient. A fluorescence spectrophotome-
ter was used to measure the fluorescence of each individual
fraction of the sucrose gradient. R. eutropha G showed fluo-
rescence predominantly in the top fractions, consistent with
fluorescence micrographs that suggest that GFP is present as a
soluble protein in the cytoplasm and not localized to PHB
granules.

R. eutropha PG and R. eutropha PIG showed a strong fluo-
rescent signal in fraction 7, which coincides with the fraction
containing PHB. These results strongly suggest that in R. eu-
tropha PG and R. eutropha PIG, the GFP is localized to the
PHB granules.

A fluorescent signal also appeared in the upper fractions of
the R. eutropha PG and R. eutropha PIG density gradients. We
propose several possible explanations for the presence of sol-
uble GFP in these strains: (i) excess PhaP-GFP and PhaP-
intein-GFP cannot bind because the PHB granule binding ca-
pacity has been exhausted, (ii) affinity is reduced due to the

C-terminal fusion of GFP to the PhaP protein, or (iii) the
minor fluorescence could represent a small amount of desorp-
tion that occurs during sonication and sucrose density gradient
fractionation.

From the fluorescence microscopy and sucrose density frac-
tionation, we concluded that PhaP-GFP and PhaP-intein-GFP
fusions are localized in vivo to PHB granules. A cleavage exper-
iment was designed to demonstrate the release of pure GFP from
whole cell debris (see Materials and Methods). Briefly, R. eutro-
pha strains were cultivated in Lee medium, harvested, resus-
pended in buffer B1 and sonicated. The lysate was centrifuged
and the supernatant fraction, containing the soluble protein frac-
tion, was discarded. The pellet was washed in buffer B1. To
induce intein cleavage, the pellet was resuspended in buffer B2,
and incubated overnight at 37°C. The mixture was then centri-
fuged and the pellet and supernatant fractions both retained. The
pellet was again washed with buffer B1.

FIG. 2. Intein mediated cleavage of GFP and beta-galactosidase
from whole cell debris. R. eutropha strains were lysed by sonication, the
supernatant discarded and the insoluble pellet containing PHB gran-
ules retained. Intein mediated cleavage was activated by incubating the
washed pellet overnight in buffer B2 at 37°C. After incubation, the
pellet and supernatant fractions were isolated. (a) Fluorometry. Green
bars show the fluorescence of the supernatant fractions. Tan colored
bars denote the fluorescence of the resulting pellet fraction. (b) SDS-
PAGE of fractions. Lanes 2 and 3: R. eutropha wild-type pellet and
supernatant following dithiothreitol treatment, respectively. Lanes 4
and 5: R. eutropha G pellet and supernatant. Lanes 6 and 7: R. eutropha
PG pellet and supernatant. Lanes 8 and 9: R. eutropha PIG pellet and
supernatant. (c) SDS-PAGE. Lane 2: R. eutropha PIL supernatant.
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FIG. 3. Flowchart of a recombinant protein purification scheme based on PhaP mediated PHB granule sequestration. Ralstonia eutropha
recombinants expressing phasin-intein-GFP (PIG) are cultivated in a shake flask or a bioreactor. Cells are harvested by centrifugation, washed and
resuspended in buffer B1 prior to cell disruption. The cell lysate is centrifuged, the supernatant fraction discarded and the insoluble fraction
retained. After washing the insoluble pellet, the fraction is resuspended in buffer B2. The intein is thiol activated and GFP is released from the
whole cell debris into the supernatant. The pure protein is recovered by centrifugation, discarding the pellet and retaining the supernatant fraction.
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Figure 2A shows the fluorescence of the pellet and super-
natant fractions. Neither the R. eutropha wild-type pellet nor
the corresponding supernatant showed appreciable fluores-
cence. Similarly, the pellet and supernatant fractions of
R. eutropha G showed no appreciable fluorescence as ex-
pected. As expected, R. eutropha PG showed strong fluores-
cence on the pellet with no appreciable fluorescence present in
the supernatant. In contrast, R. eutropha PIG showed very
strong fluorescence in the supernatant fraction, indicating that
GFP had been released from the pellet into the supernatant
fraction. Although the bulk of the total fluorescence was
present in the supernatant, a minor amount of fluorescence
remained on the PHB granule. To confirm the dithiothreitol-
mediated release of GFP and the absence of pH effects, an
identical experiment was performed in which the cell debris
fraction generated from R. eutropha PIG was resuspended in
buffer B1 (i.e., buffer B2 lacking dithiothreitol). No apprecia-
ble fluorescence was found in the supernatant fraction and the
fluorescence of the cell debris remained unchanged (data not
shown).

Figure 2B shows an SDS-PAGE gel for the pellet and su-
pernatant fractions with the corresponding fluorescence data
depicted in Fig. 2A. As expected, the whole cell debris for each
strain contains numerous proteins. No protein is visible on the
gel for the supernatant fractions of R. eutropha wild-type,
R. eutropha G, and R. eutropha PG. The PhaP-intein-GFP
fusion protein is expected to be 70 kDa in size. If intein-
mediated cleavage occurs, a protein of 49 kDa, corresponding
to an intein-GFP (IG) fusion, should be released. Figure 2B,
lane 9, shows that IG was the only protein present in the
supernatant fraction. This observation confirms that intein me-
diated cleavage, activated by thiol addition, released GFP from
the granule in the cell debris of R. eutropha PIG.

To further investigate the robustness of this method we
attempted to purify a relatively large, multimeric, catalytically
active protein (�-galactosidase, 4 � 116 kDa). R. eutropha PIL
was generated using plasmid pPIL (see Table 1). Plasmid pPIL
is isogenic to plasmid pPIG with the exception that the gfpmut2
ORF in pPIG has been replaced with the lacZ ORF in pPIL.
Therefore, in R. eutropha PIL, the wild-type phaP gene has
been replaced by a phaP::Mxe GyrA intein::lacZ translational
fusion.

Intein mediated release of pure �-galactosidase, using cell
extracts of R. eutropha PIL was demonstrated. Craven et al. (7)
reported a specific activity of 40,000 U/nmol (340,000 U/mg,
28°C, pH 7.0) for purified �-galactosidase obtained by three
purification steps (ammonium sulfate precipitation, size exclu-
sion chromatography and DEAE chromatography). Colby and
Hu (5) reported 19,000 U/nmol (160,000 U/mg, 30°C, pH 7.0)
for purified �-galactosidase obtained by five purification steps
(ammonium sulfate precipitation, electrophoresis, DEAE
chromatography, size exclusion chromatography and crystalli-
zation). Following the above described method, a specific ac-
tivity of 53,000 U/nmol was measured in the supernatant fol-
lowing dithiothreitol treatment of whole cell debris. Thus, a
single purification step, without external chromatography; re-
sults in a protein fraction of high purity consistent with previ-
ously reported data for pure �-galactosidase and SDS-PAGE
(see Fig. 2C).

We have also explored the effect of orientation by using

PhaP as the C-terminal fusion partner (i.e., creating plasmids
pGIP and pLIP). Similar to results generated using PhaP as the
N-terminal fusion partner, we have shown that soluble, active
GFP and �-galactosidase can be recovered in a single purifi-
cation step when PhaP was used as the C-terminal fusion
partner (data not shown).

DISCUSSION

In this study, we report the development of an integrated
protein expression and purification approach that obviates
the need for external chromatography. By replacing the
wild-type phaP gene with a triple translational fusion (phaP
ORF, Mxe GyrA intein and gfpmut2), we were able to show
that the fusion protein can be localized to the PHB granule
and separated from the remaining cytosolic protein fraction
by centrifugation. In a subsequent step, we were able to
release pure GFP by resuspending whole cell debris (insol-
uble fraction of cell lysate, containing PHB granules) in a
buffer containing dithiothreitol (see Fig. 3). We also ex-
pressed, recovered and purified �-galactosidase to demon-
strate the applicability of this method to purify catalytically
active proteins. We showed that the enzyme is essentially
pure and that the specific activity is comparable to previ-
ously reported literature values for pure �-galactosidase.

The single step purification eliminates the need for elabo-
rate and costly protein purification schemes. Moreover, adapt-
ing the use of inteins eliminates the need for specific endopep-
tidases, which are routinely used to release recombinant
protein from affinity matrixes. It is contemplated that this sys-
tem could be adapted for use in other hosts that either produce
PHB granules naturally or hosts that have been engineered to
produce PHB.

By integrating high-level recombinant protein expression
with a simple, protein purification step, this system has the
potential to improve upon current technologies for the large-
scale production of commodity enzymes, therapeutic proteins,
vaccines, and peptides.

ACKNOWLEDGMENTS

This work was supported by ARO grant DAAD19-00, DOJ grant
2000-DT-CX-K001(S-1), and NIST grant 60NANB1D0064.

We thank George O’ Toole (Dartmouth Medical School) for the use
of his fluorescence microscopy equipment.

REFERENCES

1. Alexeyev, M. F. 1999. The pKNOCK series of broad-host-range mobilizable
suicide vectors for gene knockout and targeted DNA insertion into the
chromosome of Gram-negative bacteria. BioTechniques 26:824–826.

2. Anderson, A. J., and E. A. Dawes. 1990. Occurrence, metabolism, metabolic
role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev.
54:450–472.

3. Barnard, G. C., G. H. Henderson, S. Srinivasan, and T. U. Gerngross.
2004. High level recombinant protein expression in Ralstonia eutropha
using T7 RNA polymerase based amplification, Protein Express. Purif.
38:264–271.

4. Cha, H. J., C. F. Wu, J. J. Valdes, G. Rao, and W. E. Bentley. 2000. Obser-
vations of green fluorescent protein as a fusion partner in genetically engi-
neered Escherichia coli: monitoring protein expression and solubility. Bio-
technol. Bioeng. 67:565–574.

5. Colby, C., Jr., and A. S. Hu. 1968. Purification and comparison of the
�-galactosidase synthesized by Escherichia coli F-lac� and Proteus mirabilis
F-lac�. Biochim. Biophys. Acta 157:167–177.

6. Cormack, B. P., R. H. Valdivia, and S. Falkow. 1996. FACS-optimized
mutants of the green fluorescent protein (GFP). Gene. 173:33–38.

7. Craven, G. R., E. Steers, Jr., and C. B. Anfinsen. 1965. Purification, com-

VOL. 71, 2005 EXPRESSION AND PURIFICATION METHOD BASED ON R. EUTROPHA 5741



position, and molecular weight of the �-galactosidase of Escherichia coli K12.
J. Biol. Chem. 240:2468–2477.

8. de Lorenzo, V., M. Herrero, U. Jakubzik, and K. N. Timmis. 1990. Mini-Tn5
transposon derivatives for insertion mutagenesis, promoter probing, and
chromosomal insertion of cloned DNA in gram-negative eubacteria. J. Bac-
teriol. 172:6568–6572.

9. Derbyshire, V., D. W. Wood, W. Wu, J. T. Dansereau, J. Z. Dalgaard, and
M. Belfort. 1997. Genetic definition of a protein-splicing domain: functional
min-inteins support structure predictions and a model for intein evolution.
Proc. Natl. Acad. Sci. USA 94:11466–11471.

10. Hanley, S. Z., D. J. Pappin, D. Rahman, A. J. White, K. M. Elborough, and
A. R. Slabas. 1999. Re-evaluation of the primary structure of Ralstonia
eutropha phasin and implications for polyhydroxyalkanoic acid granule bind-
ing. FEBS Lett. 447:99–105.

11. Jurasek, L., and R. H. Marchessault. 2002. The role of phasins in the
morphogenesis of poly(3-hydroxybutyrate) granules. Biomacromolecules
3:256–261.

12. Karr, D. B., J. K. Waters, and D. W. Emerich. 1983. Analysis of poly-�-
hydroxybutyrate in Rhizobium japonicum bacteroids by ion-exclusion high-
pressure liquid chromatography and UV detections. Appl. Environ. Micro-
biol. 60:3952–3958.

13. Luria, S. E., J. N. Adams, and R. C. Ting. 1960. Transduction of lactose-
utilizing ability among strains of E. coli and S. dysenteriae and the properties
of the transducing phage particles. Virology 12:348–390.

14. New England Biolabs. 2003. IMPACT-TWIN instruction manual, version
1.2, 12/03. New England Biolabs, Beverly, Mass.

15. Pieper-Fürst, U., M. H. Madkour, F. Mayer, and A. Steinbüchel. 1995.
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